
Evolution of Safety-Critical Requirements Post-Launch

Robyn R. Lutz �

Jet Propulsion Laboratory

and Iowa State University

rlutz@cs.iastate.edu

Ines Carmen Mikulski

Jet Propulsion Laboratory

Pasadena, CA 91109-8099

ines.c.mikulski@jpl.nasa.gov

Abstract

This paper reports the results of a small study of re-
quirements changes to the onboard software of three
spacecraft subsequent to launch. Only those require-
ment changes that resulted from post-launch anoma-
lies (i.e., during operations) were of interest here,
since the goal was to better understand the relation-
ship between critical anomalies during operations and
how safety-critical requirements evolve. The results
of the study were surprising in that anomaly-driven,
post-launch requirements changes were rarely due to
previous requirements having been incorrect. Instead,
changes involved new requirements (1) for the soft-
ware to handle rare events or (2) for the software
to compensate for hardware failures or limitations.
The prevalence of new requirements as a result of
post-launch anomalies suggests a need for increased
requirements-engineering support of maintenance ac-
tivities in these systems. The results also con�rm
both the di�culty and the bene�ts of pursuing require-
ments completeness, especially in terms of fault tol-
erance, during development of critical systems.

1. Introduction

This paper reports the results of a study of safety-
critical requirements changes in response to anoma-
lies during ight, to the software onboard three space-
craft. We distinguish these anomaly-driven require-
ments changes from requirement changes resulting
from planned evolution or maintenance in an e�ort
to understand and, perhaps, reduce their number and
attendant risks.
In planned evolution or maintenance there are

�
Published in Proc. of the Fifth International Symposium

on Requirements Engineering.

many requirement changes to the onboard software
on a spacecraft after launch. The lifetime of a space-
craft is usually measured in years, and scheduled up-
dates must maintain the software as the spacecraft
proceeds through the phases of its mission. For ex-
ample, new software tailored to the next phase will
often be uplinked to a spacecraft's computer prior to
each navigational maneuver, orbital insertion around
a new planet, sequence of scienti�c data-gathering,
etc.

In this study, however, it was not these anticipated
requirements changes due to scheduled maintenance
that were of interest. Instead, the goal was to better
understand the relationship between anomalies dur-
ing operations and the evolution of safety-critical re-
quirements. We thus focus on a very small but essen-
tial and high-risk (because urgent and unplanned)
subset of the total set of requirements changes to
the spacecraft software. Software requirements such
as these that are essential to the accomplishment of
the spacecraft's mission are de�ned as safety-critical
in this domain. The objects of study were thus
the unanticipated requirements changes prompted by
critical, post-launch anomalies.

The rest of the paper is organized as follows. Sec-
tion 2 describes the approach. Section 3 presents and
discusses the results. Section 4 places these results
in the context of related work in both requirements
engineering and maintenance. Section 5 provides a
summary and some concluding remarks.

2. Approach

The data for the analysis of critical, unanticipated re-
quirements changes were drawn from an institutional
database of anomaly reports. Data were analyzed
from three spacecraft: Mars Global Surveyor, a map-



ping mission launched in November, 1996; Cassini,
a mission to Saturn launched in October, 1997; and
Deep Space 1, a technology demonstrationmission (of
ion propulsion and remote agent technologies, among
others) launched in October, 1998.
The reporting mechanism is an on-line form (called

an Incident/Surprise/Anomaly, or ISA, report) that
consists of three parts. The �rst part is �lled in at the
time of the occurrence by the operator. The second
part is �lled in by the analyst assigned to investigate
the occurrence. The third part is later �lled in with
a description of the corrective action that was taken
to close out the incident. Additional information re-
garding criticality, priority, time and date, subsys-
tem, etc., can also be entered into the available �elds.
It is worth noting that an ISA is not a defect re-

port. An ISA is written whenever the behavior of
the system di�ers from the expected (i.e., required)
behavior in the eyes of the operator. Thus, the ISA
provides valuable information to the requirements en-
gineer because it tends to capture gaps between the
requirements as speci�ed and implemented and the,
perhaps di�erent, user's expectations.
The ISA also provides a means of documenting

what NASA calls \dive-and-catch" defects, i.e., fail-
ures that almost occurred but were prevented by
some fortuitous circumstance (e.g., fault monitoring,
contingency commands, a change of mode, etc.). In
some cases the near-miss prompts a change to the
ight software requirements. For example, in this
study two ISAs described incidents in which an in-
ight anomaly triggered a contingency (safe) mode or
fault-protection response. In both cases a new soft-
ware requirement resulted from analysis of the in-
cident in order to preclude such an anomaly in the
future.

3. Results and analysis

A sample of 86 ISAs in the highest criticality level
from three spacecraft was analyzed. The criticality
level is assigned by the project based on standard
classi�cations [8]. Because of slight di�erences in
the processes of the three projects regarding which
�elds of the anomaly reports were used, we studied
all anomaly reports that met one of the following four
criteria to assure that we provided coverage of all crit-
ical ISAs: (1) Red ag or Potential red ag = On (in-
dicates high mission risk if the event were to recur;
signi�cant or catastrophic risk; and uncertain �x);
Criticality = 1 or 2 (the highest categories) or �eld

unused; Criticality> 2 and Priority = 1 (the high pri-
ority is assigned by the correcting agency indicating a
\must-�x" situation); and Failure E�ect Rating > 1
(indicating a signi�cant or major failure e�ect on the
mission, or �eld unused). Anomalies meeting one or
more of these criteria were studied and are together
included under the shorthand term \critical ISAs" in
this paper.

Seventeen of the 86 critical ISAs had ight software
as their target, i.e., the anomaly prompted a change
to the ight software. (The other 69 ISAs produced
changes to procedures, ground software, documenta-
tion, etc., outside the scope of this paper.) Eight
of the seventeen ISAs resulted in updates only to
the code but not to requirements (e.g., bias or �l-
ter updates, adjustment of a timeout parameter, er-
roneous re-initialization to \on" rather than \o�").
The ninth of the seventeen ight software ISAs in-
volved a maintenance problem (an incorrect software
patch). The tenth of the seventeen ight software
ISAs recorded an occasion on which an existing con-
tingency software command, previously created just
in case an overpressure emergency should ever occur,
needed to be sent to the spacecraft to close a leaking
valve. The discussion that follows focuses on the re-
maining seven of the seventeen high-criticality, ight
software ISAs, since each of these involved new soft-
ware requirements for the ight software.

3.1 New requirements for rare events

Post-launch critical anomalies were resolved by new
requirements to handle rare or anomalous events in
four cases. In the �rst of these, an unusual code
path (due to an unanticipated combination of circum-
stances) caused unexpected behavior. In another, an
unforeseen scenario led to the use of obsolete data
in a particular case. In two other critical anomalies,
a rare scenario led to an overow. In each of these
cases, the anomaly was considered to contribute risk
to the mission, and a critical software change was
made to add robustness against future occurrences.

These results con�rm the importance of rare events
in critical failures. As Hecht noted in his 1993 paper,
\the inability to handle multiple rare conditions, such
as response to hardware failures or exception condi-
tions caused by the computer state, is a prominent
cause of program failure in well-tested systems" [7].
Hecht further noted, \Rare events were clearly the
leading cause of failures among the most severe fail-
ure categories."



3.2 New requirements to compensate

for hardware and environment

Critical requirements changes were driven by changes
to the hardware or environment in three cases. In one
case, safety-critical post-launch requirements changes
were initiated due to a rare environmental event{
namely the unexpected outow of some debris that
interfered with the spacecraft's ability to determine
its position in space. The new software requirements
were to make the spacecraft more fault-tolerant to
that type of temporary \loss of vision" in the fu-
ture. In another case, a hardware failure prompted
on-board fault-protection software to turn o� the
hardware component. Subsequent analysis revealed
the \what-if" scenario that the other two, redundant
components might fail in worse condition (unlikely,
but credible). In that case, the on-board software
would need to turn on the \least-failed" component
that had been turned o�. A new software require-
ment to facilitate this switching was established in
response to the failure scenario arising from the ini-
tial hardware failure. In a third case, a new capabil-
ity was added to the ight software in response to a
damaged solar array panel that could not deploy as
planned.
One issue of interest in the last two cases above

is that the trigger for software change was hardware
failure. This is contrary to the underlying assumption
of some defect models that what breaks is what gets
�xed. It is very typical, however, of complex, heavily
embedded software on the spacecraft, in which, as
hardware degrades, the software requirements evolve
to close the gap (Fig. 1).
Perhaps the best-known example of this is the re-

programming of one of the Galileo spacecraft's com-
puters with clever, new compression algorithms to
minimize scienti�c data loss when Galileo's large an-
tenna failed to deploy.

More recently, when the spacecraft Deep Space
1 lost a critical sensor, the software on board was
changed to compensate for the hardware failure. The
failure of the Deep Space 1 star tracker in November,
1999, jeopardized the planned encounter of the space-
craft with a comet. The star tracker determines the
spacecraft's orientation in space and, without it, the
spacecraft is in some sense blind. In order to com-
pensate for the hardware failure, software was radioed
to re-program the on-board camera to serve as a re-
placement for the star tracker. The project manager
called the updated software \very complex and inno-
vative" and labeled the change a \rescue" [11]. Al-

New S/W
Requirement

Bridges Gap

Critical Functional
Requirement

Hardware

Hardware
Implementation
of RequirementAllocated to BREAK

Figure 1: Software requirements change to compen-
sate for hardware failure

though none of the requirements changes in this study
approached the scope of the Galileo or Deep Space
software changes, the possibility of having to rebuild
remotely a signi�cant amount of the software empha-
sizes the need for requirements engineering support
during the post-launch maintenance phase.

3.3 Consequences for the requirements

process

The pro�le of critical anomalies found during oper-
ations on these three spacecraft was compared with
earlier work by one of the authors on critical anoma-
lies during integration and system testing of ight
software. The previous work was on two di�erent,
but fairly similar spacecraft (Voyager and Galileo),
roughly comparable in function and complexity to
the spacecraft in this study. It was found in the ear-
lier study that, during the testing phase, most of the
critical anomalies involved requirements or interfaces
[10].
The small number of critical requirements-related

anomalies found post-launch in the current study,
and the fact that all the requirements-related anoma-
lies yielded new requirements (rather than corrected
requirements) suggest that the testing process is do-
ing a good job of removing requirements-related de-
fects. The extensive integration and system testing
of troublesome components may also provide some
explanation for a recent �nding by Fenton and Ohls-
son of what they call \strong evidence of a counter-
intuitive relationship", i.e., that modules that are



the most fault-prone pre-release are the least fault-
prone post-release [4]. It may be that modules iden-
ti�ed as fault-prone during spacecraft system testing{
especially if the fault a�ects requirements{are (appro-
priately) subjected to more thorough testing.

An interesting question was posed by reviewers
regarding the 69 critical ISAs that did not pro-
duce changes to ight software. Was it possible
that a mechanism similar to the use of ight soft-
ware to compensate for hardware problems occurred,
whereby changes to ground (as opposed to ight)
components were compensating for problems in ight
software? The reviewers asked how many of the 69
ISAs involved problems with the ight software that
were remedied by changing the more readily modi�ed
components of the system such as ground software or
procedures.

Investigation revealed that, in fact, only six of the
69 ISAS met this criteria, and that only one of the
69 ISAs involved a change to ground software re-
quirements. Of these six ISAs that involved ight
software problems but not ight software �xes, four
resulted in changes to prevent the recurrence of
the problem. Of these, one involved modi�cation to
the ground software (to add a pause), one resulted in
an update to documentation (regarding an unantici-
pated side e�ect of a software command), and two led
to changes in operational procedures (to preclude re-
currences of the scenarios). Two ISAs described mod-
i�cations to recover from future recurrences of the
problem. These included updating the procedure to
recover from radiation-induced bit errors and adding
a procedure to automatically recover pending com-
mands lost if the software crashed.

None of these six ISAs involved ight software re-
quirements, in the sense that none of these scenar-
ios would, if identi�ed during requirements analysis,
have changed the ight software requirements. Thus,
it appears that changes to ground software, proce-
dures, and documentation are not masking changes
to ight software requirements.

As far as the long-term goal of the research in which
this study is embedded, i.e., to further reduce the
number of safety-critical anomalies post-launch, the
results are somewhat negative. That is, it is di�-
cult to see how the requirements engineering process
during development can be readily adjusted so as to
preclude the post-launch requirements changes.

To the extent that improvement is possible, these
results emphasize the bene�t of thorough hazard
analysis and fault-scenario explorations, and of exten-

sive contingency planning during requirements anal-
ysis. Even where a possible requirement has not been
implemented, documented contingency studies can
facilitate accurate requirements evolution when it be-
comes necessary during operations. The fact that
four of the seven critical post-launch requirements
changes were in response to rare events or planning
for rare events indicates that the cost/bene�t trade-
o� of such hazard analyses makes them worthwhile
in practice for such critical systems.
In summary,

� Bad things did happen due to incomplete re-
quirements, i.e., incomplete requirements were
not \good enough" for these critical systems.
The bene�t of working toward complete require-
ments was clear.

� The missing requirements were \hard", i.e., they
involved subtle, rare, or unexpected circum-
stances or scenarios. The di�culty and cost of
achieving the level of requirements understand-
ing needed to forestall such anomalies were high.

� What broke is not always what got �xed,
i.e., new software requirements compensated for
hardware failures or evolving limitations.

4. Related work

Most work in requirements evolution focuses on the
pre-implementation phases of a system. For exam-
ple, Anton and Potts describe the use of goals and
obstacle analysis to re�ne evolving requirements [1].
Zowghi, Ghose, and Pappas provide a logical frame-
work for reasoning about requirements evolution, also
within the requirements analysis phase of develop-
ment [13]. An open issue worth exploring is to what
extent these techniques are also useful for analyz-
ing the consequences of requirements evolution post-
launch.
Requirements evolution post-deployment has been

studied primarily from the viewpoint of how it can
be managed. DeLemos provides a model of an oper-
ational system in which requirements evolution (in
his case, automating the self-destruct feature of a
rocket) can be structured so that the components re-
main unchanged while their interactions adapt to the
changed requirements [3]. In our study, the require-
ments changes were low-level functional rather than
architectural, so primarily involved the components
themselves.



Requirements
Engineering

Maintenance

Requirements Evolution

Launch

Figure 2: Continuous evolution of requirements vs.
discontinuity in methodologies

Lam and Loomes, with experience in product line
evolution, discuss management of requirements evo-
lution after installation with particular attention to
the impact on stakeholder viewpoints [9]. The re-
quirements changes that they describe are much more
open to negotiation than are the safety-critical re-
quirements changes we saw in this study. However,
their emphasis on modeling evolution as a series of
distinct changes, and on developing a \richer no-
tion of traceability" �t well with the analytical pro-
cess involved in making anomaly-driven requirements
changes on the spacecraft.

Fickas and Feather provide a possible direction
for actually reducing the unpredictability of the
anomaly-induced requirements changes [5]. They de-
scribe requirements monitoring for dynamic environ-
ments. It may be necessary in such domains for the
system to evolve, e.g., as assumptions underlying the
requirements change. An open question is to what
extent it might be possible, via monitoring, to an-
ticipate some of the rare events or hardware failures
that triggered the critical requirements changes on
the spacecraft.

As distinct from requirements-engineering ap-
proaches, maintenance methodologies tend to focus
on classifying and managing requirements changes,
rather than on analyzing or anticipating the changes.
Figure 2 summarizes the gap that appears to exist
between RE-based analysis of requirements evolution
and maintenance-based studies of requirements evo-
lution.

Harker, Eason, and Dobson classify evolving re-

quirements as Mutable (in response to the environ-
ment), Emergent (in response to a fuller understand-
ing of possible scenarios and their consequences),
Consequential (post-delivery pressures for enhance-
ments), Adaptive (allowing local customization), and
Migration requirements (supporting gradual move-
ment to the new system) [6]. At least in the space-
craft domain, the categories can sometimes overlap.
Some anomaly-induced requirements changes can ac-
curately be described as both Mutable (in response to
changes in the environment or hardware) and Emer-
gent (in response to a better understanding of the
possible failure scenarios).
Bennett and Rajlich note in their recent roadmap

paper that software evolution lacks a standard de�-
nition [2]. They use the term \Maintenance" to re-
fer to general post-delivery activities, and divide the
Maintenance phase into �ve sequential stages: Initial
development, Evolution, Servicing, Phase out, and
Close down. The goal of the software evolution stage
is \to adapt the application to the ever-changing user
requirement and operating environment. The evolu-
tion stage also corrects the faults in the application
and responds to both developer and user learning,
where more accurate requirements are based on the
past experience with the application."
As with the previous classi�cation scheme, the

spacecraft post-launch requirement changes �t sev-
eral phases. Certainly the on-board software �ts the
software Evolution phase. However, it also, to some
extent, �ts the subsequent phase, Servicing or soft-
ware maturity, with its danger of loss of key personnel
and information due to the length of the spacecraft
mission and the planned commitment to keep require-
ment changes small in scope.
Part of the di�culty in using the maintenance lit-

erature to understand the critical spacecraft require-
ments changes is that the domain of concern in the
maintenance literature is often the business environ-
ment (e.g., handling the clamor of competing users)
rather than safety or mission-critical physical envi-
ronments. One exception is the recent work by Tai
et al. to reduce the risk of maintenance in critical
systems and support the evolvability of spaceborne
computing systems post-launch [12].

5. Conclusion

The results suggest that, for critical systems, e�ort
spent on requirements analysis, especially of failure
scenarios, rare events, and contingency planning for



how software can compensate for hardware failures, is
merited. Incomplete requirements did, in fact, cause
anomalies to occur. The bad news was that these
missing requirements were hard{that is, they involved
subtle, rare, or unexpected circumstances or combi-
nations of events. To a limited extent, requirements
evolution in response to these causes may be able to
be anticipated, and we have indicated some promising
directions in current research toward this goal.
One of the lessons learned from the study of re-

quirements changes post-launch was that new soft-
ware requirements were often needed to make the
deployed software more robust against unanticipated
scenarios. Another lesson learned was that require-
ments evolution post-launch was driven in part by a
dependence on software to compensate for evolving
hardware limitations. Contrary to common defect
analysis assumptions, in these cases what broke (the
hardware) was not what got �xed (the software). We
saw, as well, that existing maintenance models do not
incorporate requirements-engineering techniques that
might help in analyzing and anticipating possible re-
quirements evolution.

Acknowledgments

The work described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute
of Technology, Pasadena, CA, under a contract with
the National Aeronautics and Space Administration.
Partial funding was provided under NASA's Code Q
Software ProgramCenter Initiative UPN 323-08. The
authors thank the anonymous reviewers for the ques-
tion posed in 3.3. The �rst author thanks Dr. Daniel
Paulish and Siemens Corporate Research, Princeton,
NJ, for their hospitality during the writing of part of
this paper.

References

[1] A. I., Anton and C. Potts, \The Use of Goals to Sur-
face Requirements for Evolving Systems," Proceed-
ings of the 20th International Conference on Soft-
ware Engineering (ICSE '98), Kyoto, Japan, April
19{25, 1998, pp. 157{166.

[2] K. H. Bennett and V. T. Rajlich, \Software Mainte-
nance and Evolution: a Roadmap," in Foundations
of Software Engineering, ICSE '00 , ed. A. Finkel-
stein, ACM Press, 2000.

[3] R. deLemos, \Safety Analysis of an Evolving Soft-
ware Architecture," Proceedings of the Fifth IEEE

International Symposium on High Assurance Sys-
tems Engineering (HASE '00), IEEE Computer So-
ciety, Los Alamitos, CA, 2000, pp. 159{167.

[4] N. E. Fenton and N. Ohlsson, \Quantitative Anal-
ysis of Faults and Failures in a Complex Software
System," IEEE Transactions on Software Engineer-
ing, 26, 8, August, 2000, pp. 797{814.

[5] S. Fickas and M. Feather, \Requirements Monitor-
ing in Dynamic Environments," Proceedings of the
Second International Symposium on Requirements
Engineering, York, IEEE, 1995.

[6] S. D. P. Harker, K. D. Eason, and J. E. Dobson,
\The Change and Evolution of Requirements as a
Challenge to the Practice of Software Engineering,"
Proceedings of the IEEE International Symposium
on Requirements Engineering, IEEE Computer So-
ciety, Los Alamitos, CA, 1992, pp. 266{272.

[7] H. Hecht, \Rare Conditions{An Important Cause
of Failures," Proceedings of the Eighth Annual Con-
ference on Computer Assurance, IEEE, June, 1993,
pp. 81{85.

[8] \ICAP Anomaly Process, Glossary," Safety and
Mission Assurance Information Systems, Jet
Propulsion Laboratory, January 17, 1997.

[9] W. Lam and M. Loomes, \Requirements Evolution
in the Midst of Environmental Change: A Man-
aged Report," Proceedings of the Second Euromicro
Conference on Software Maintenance and Reengi-
neering, Florence, Italy, March 8{11, 1998, pp. 121-
127.

[10] R. Lutz, \Analyzing Software Requirements Errors
in Safety-Critical, Embedded Systems," Proceed-
ings of the IEEE International Symposium on Re-
quirements Engineering, IEEE Computer Society
Press, 1993, pp. 126{133.

[11] \Space Rescue Makes Close Encounter Possible,"
JPL News Release, July 27, 2000.

[12] A. T. Tai, K. S. Tso, L. Alkalai, S. N. Chau, and W.
H. Sanders, \On Low-Cost Error Containment and
Recovery Methods for Guarded Software Upgrad-
ing," Proceedings of the 20th International Con-
ference on Distributed Computing Systems (ICDCS
'00), Taipei, Taiwan, April, 2000.

[13] D. Zowghi, A. K. Ghose, and P. Peppas, \A Frame-
work for Reasoning about Requirements Evolu-
tion," Proceedings of the Third International Sym-
posium on Requirements Engineering (RE '97), An-
napolis, MD, January 6{10, 1997, pp. 247{257.


